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ON THE PLASTIC LOADING PROCESS BEHIND AN UNLOADING SHOCK FRONT* 

A.G. BYKOVTSEV 

The problem of elastic wave refraction in an elastic-plastic half-space 
(EPH) in the active loading domain has been investigated /l-4/ for 
different models of an elastic-plastic body. The problem has been 
solved /5/ for refraction of a pure shear elastic wave that has a 
profile of steps of finite length in an EPH in both the active plastic 
loading domain and in the unloading zone under the assumption that the 
material behind the unloading shock (US) is in the elastic state. It is 
shown below for this problem that a plastic loading process can be 
realized behind the US front and a solution is constructed in the 
secondary plastic flow zone. 

1. R medium is under antiplane deformation conditions when a pure shear wave propagates. 
The displacement velocity vector w is directed along the x3 axis and depends on the variables 

51. 22 and the time t, and the stresses r1 = u13 (I~, x,; 1); zg = u'2s (s,, .Q, t) differ from zero. 
Henceforth we will confine ourselves to investigating selfsimilar solutions of the equations 
of the dynamics of an ideal elastic-plastic body that depend on two variables .r = 21 - et and 
y = X8. In this case the equations of the characteristics and the relationships along the 
characteristics of the system of motion equations have the following form /3.!: 

in the elastic domain and unloading zone 

x + xy r= const, xw - r, '7: const 

x - xy = const, xw + rt2 = const 

yr=~onst,2,~w=f(y),x;=~MB-1,M=~~~a,a=~~ 

(1.1) 

(1.2) 

(1.3) 

in the active plastic loading domain 

dy (M + cos 0) = -sin 8&r, e + Mw = const 

dy(,W - cos 6) = sin 8&z, @ - WW = eon&, tl = sin 8, 

z2 = cos 0 

Here p is the density and )_I is the shear modulus. 
Equations (l.lf-(1.5) are written in dimensionless variables that will be used later (to 

simplify the writing the bars above the dimensionless variables are omitted, and k is the yield 
point) 
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2. Let a pure shear plane wave OA with a profile of steps of finite length (Fig.1) be 
incident from an elastic half-space y<O, characterized by the parameters rll9 PI, a1 = 

~&Pz, .on the interfacial boundary y = 0 with the EPH y> 0, whose mechanical properties are 
defined by the parameters pa,pz, a2 = 1/G, k. Because of the interaction of the incident 
wave OA with the interfacial boundaries a refracted wave OC and a reflected wave OB are 
formed. The EPH material ahead of the wave front OC is at rest and there are no initial 
stresses therein. It is assume that the stress r$ on the interfacial boundary and the rate 
of displacement W are continuous, whence we have /5/ 

2w, (--xain tpl) = w (x1 - I-L tg %za fx), EL = n&k (2.j) 

Here w M and =, ($1 are the displacement velocity and the stress on the interfacial 
boundary in the EPH, ZI&(---xsincp,) is a function yielding the incident wave profile and in- 
tensity (wr (-5 sin rpJ = WO = const for .z~ < ssinrp, < 0 and ul,(--zsin ml) = 0 for 5 sin 'pl < 

IN)? and 'pl is the angle of incidence. 

Fig.1 

The wave pattern in the EPH is shown in Fig-l. The material is in the elastic state in 
the domain EOCwhile plastic deformation of the EPH material occurs in the domain EONand IVE 
is the US. It has been shown /5/ that the plasticity condition behind the US front can be 
satisfied on the interfacial boundary for the problem under consideration. Consequently, we 
assume that the EPH material in a certain neighbourhood of the point N behind the US front is 

in the plastic state. The following relationships hold on the line of strong discontinuity 

NE 151. 

Tz- = T1* + [WI, G&- = x2+ +x [x4, x = j/W - 1, (2.2) 
M = da, 

Here fzl = zc -z-, 2*, z- are the limiting values of 2: on the US front in the plastic loading 
and unloading domains respectively. 

The stresses x1- and ?%- satisfy the flow condition 

r1 -a f T2 -2 = 1 (2.3) 

We determine the jump in W on the US from (2.2) and (2.3) 

[WI = -2 (zl' + q*) M-z (2.4) 

We obtain for the stresses from (1.51, (2.2) and (2.4) 

%- = sin (0+ - 29), tZ- = cos (0' - 2cp) (2.5 

Theplasticity condition (2.3) will be satisfied if we set 

2; = sin 8-, 4 = cos e- (2.6) 

We determine the jump in 8 on the US from (2.5) and (2.6) 

Iei = e+ - e- = 2e+ - n - 2~p (2.7) 

CP 
Relationships (1.4) and (1.51 hold in the plastic loading domain. But WE~(x,n+ qrl /5/ 
is the angle of refraction), and hence we obtain from (2.71 that S-E [tp,2gt]. Therefore, 

the characteristics (1.5) intersect the line NF and the relationships 

dy (M - cos 0) = sin edz, 0 - MW = 8- - Mw- f2.8) 



404 

are satisfied thereon. 
A quantity that is constant for all the characteristics of this family that intersect the 

segment NF is on the right side of the second equality in (2.8) (since the quantities 0+, w+ 
are constant on the NF /5/J. Consequently, we obtain from (1.4) and (2.8) that w and % do 
not vary along the characteristics of the other family, from which it follows that the character- 
istics (1.4) are rectilinear 

y (M + eos8)+ sin6 (5 - XH) = 0, 0 f Mu: = const (2.9) 

The characteristics (2.9) are inclined to the x axis at an angle qe which determines the 
position of the characteristic NG (Fig.11 (tgv, = -sin%M?M-/(M + cos6~~)<tg4)). The stresses 
and displacement velocity are constant in the domain GNP 

z1 = sin em-, '2 = cos &-, u, = M-1 (1 -t_ _n + '0 - eN+ + 
2 ~08 (e+ - VP), eN- = zv + n - eN+ 

(2.10) 

and relationships (2.8) take the form 

dy (M - cos 0) = sin 0 dx, % - Mw = fp - 1 - 2 eos (es+ - 9) (2.11) 

After eliminating W from the boundary condition on the interfacial boundary (2.1) and the 
integral (2.11), we obtain 

(% + 1 - cp)A - cos 0 ‘I -2 cos (BN+ - VP), A = sin 'p cos (pJ(p sin cpJ (2.12) 

The root 0 = %I of (2.12) determines the position of the characteristic NK and the sol- 
ution in the domain MNX where the stresses and displacement velocity are constant (Fig.1). 
For an arbitrary point (3,~) of the domain GNK the solution is determined by the quantity 
0, the root of the first equation of (2.91, that yields the position of the characteristic 
of the family (2.9) passing through the point (XI !J). 

The solution constructed holds in the case when the slope of the characteristic &V to the 
x axis is less than the slope of the characteristic GNand energy dissipation is positive at 
each point of the domain FNM. 

We will investigate the change in 0 in the domain FNM. We will examine the function 
f (%)= (0 + 1 - cp)A - cos%. In the domain FNM df (0)/d% = A + sin 0 > 0, since % E [cp, 291, 
in the domain FNG, and henceforth % cannot exceed n and be less than 0 (for %=O and 
% = X the characteristic YK becomes parallel to the 3: axis and a slip zone is formed on the 
interfacial boundary /3, 4,'). 

We will evaluate the function I(%) at the points 0~~ and Bi and examine the case 
when f (8,) > f (%,), i.e., when the following inequality is satisfied 

2c0~(%j$-~)(A-+c0~(~)+A(1+~-t-~-%~+)-cos%~~>O (2.13) 

Then since df (%)/de > 0, %N->~Y i.e., the Cpantity 0 decreases during motion along 
the characteristic (2.11) from the point G to the point K, 

The characteristics (2.9) are inclined at an angle 4 to the x axis and 

ty* = -sin ei(,w T cus 0) (2.14) 

Differentiating relationship (2.14) with respect to the direction given by the vector s = 

(~0s rp, sin cp), we obtain 

(2.15) 

It follows from relationship (2.15) that the slope of the characteristics of the family 
(2.91, starting from the point N, to the x axis decreases if 

cos 0 + sin 'p > 0 (2.1%) 

It has been shown that O<% <22rp when condition (2.131 is satisfied and in this case 
inequality g2.16) is satisfied. 

Let us examine the constraints that are imposed by inequality (2.13) on the incident wave 
intensity W,. We set elv+ = x -t- qp* (0~ 'P* < cp). The quantity %sv+ satisfies the boundary 
condition on the interfacial boundary ahead of the US front NE that has the form /5/ 

ZLV', i= sincp(1 + 'p - cp*)i- btgcp,cos 'p* (2.17) 

We will obtain the criterion for secondary plastic flow zone formation behind the US front: 
from relationships (2.131 and (2.17) 

W. > sin 'p cos (9 - tp*)(1 + cos Fph-') (2.18) 

The conditions for the EPH material to pass into the plastic state and for a slip zone to 
form ahead of the US front NE on the interfacial boundary, respectively, have the form /5/ 
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2 1 W,, 1 > sin ‘p (1 + A-' cos cp), 2 1 W, ) > sin cp (1 + cp + A-l) (2.19) 

Comparing the first inequality in (2.19) and condition (2.18) we can conclude that if 
'p - 'p* > nl3, then the plastic deformation ahead of the US front NE (Fig.1) always involves 
the formation of the secondary plastic flow zone behind the US front. If a slip zone is formed 
ahead of the wave front NE then 'p* = 0. If cp = 'PO is a root of the equation 2 cos cp - 1 - 
'p + A-'cos 2~ = 0 (where 'p,,< nib), it follows from a comparison of the second inequality 
(2.19) and the criterion (2.18) that for 'p>qo slip zone formation ahead of the US front 
always involves the formation of a secondary plastic flow zone behind the wave front NE. 

We will consider the energy dissipation D in the domain FNM. The condition of positivity 
of D in the plastic domain has the following form for the case being considered /3/: 

The stresses and rate of 
are non-dissipative zeros and 
from which we obtain 

A fan of characteristics 
their equations, we determine 

D=$(sinU$-+cosU+)>O (2.20) 

displacement are constant in the domains GNF and KNM; these 
D = 0 therein. The integral (2.11) holds in the domain GNM, 

a13lax = M~wl~x, b’B/~y = Mawlay (2.21) 

(2.9) is developed in the domain GNK and if we differentiate 
the derivatives de/&r, a$/ay. Using the expressions for these 

derivatives, we obtain from (2.21) and (2.20) that the condition for the energy dissipation 
to be positive in the domain FNM will be satisfied if 

(1 + M co9 U)(Ysin 0 - (5 - r,)cos 0) > 0 

We have 0 E lO,2rpl in the domain GNK; consequently, the inequality obtained is satisfied. 
Therefore, D>O in the whole domain FNM. 

The domain FNMin which the constructed solution holds is bounded on the left by the 
characteristic FM of the family (2.11). We will determine the equation of the line GK, the 
curvilinear part of the characteristic FM (Fig.1) (FG and KM are line segments, since the 
quantity 0 takes constant values in the domains GNF and KMN). To do this we introduce the 
variable z = y/(x - 5~) and, taking into account that the rectilinear characteristics (2.9) 
intersect the line GK (whose equation is 2 = -sin O/(M + cos O)), we obtain an ordinary dif- 
ferential equation to determine x from (2.11). Integrating this equation and satisfying the 
initial condition at the point G, we obtain the equation of the line GK in parametric form 

z = C, (M + cos O)(l - cos U)"(l + cos U)fi + IN, a = (sin cp - I)/4 (2.22) 

y = -C, sin 0 (1 - cos O)a(l + cos l3)fi, p = -(sin cp + 1)/4 

Cl = -XN (sin UN- - 2 sin v cos (UN- - q))(l + cos 0~~)~ (1 - 
co.? U,-)-a (2M coa UN-)-r 

3. We will examine the energy dissipation along the line FE behind the US front NE. In 
this case the condition for D to be positive has the form 

(3.1) 

The equation of the line NE in parametric form is 

x = xN (I - sin 'p cos 0+)/Q (U+), Y = 2~ sin q sin 0+/Q (U+), (3.2) 
52 (Cl+) = 1 + sin (U+ - 'p) 

Differentiating the function w- = W- (z (et), Y (e+)), U- = U- (X(U+), Y (U+)) with respect to 0' 
and writing the equation obtained in conjunction with the system of equations of motion, we 
will have 

_E~_+cp!&d!& ~~+2.$-.&-!!g 

cos0---sin&aB- ae- 
au 

ar/ +Mzg=O, cos&$.-sin&++$=O 

The derivatives 
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dr ZN (sin cp - cm 0”) dY - sNsin q(sincp- cos%*) 
-= 
d%* 61% (%+) ’ dB+ = 88 (e+) 

dw- dB- 
-==--M(1+2sin(O*--v)j. ==-l de* 

can be determined by using relationships (3.2),(2.4) and (2.7). 
Consequently, system (3.3) should be considered as a system of linear equations in aw-/ax, 

&D-lay, &I-/ax, ae-lay, solving which and substituting the quantities du)-i-iax, dw-iay into the 
inequality (3.1), we obtain after reduction that the condition for the energy dissipation to 
be positive will be satisfied if 

ccs(R+ - p)sin rp - fl + 3 sin(t)" - m))eoa '0 > 0 (3.4) 

But O+ E [n,n f cpl /5/ consequently inequality (3.4) is not satisfied. Therefore, the 
material is in the elastic state in a certain neighbourhood of the line FE (Fig.1) behind the 
US front NE. 

Following /6/, we will determine the range of variation of the secondary plastic loading 
wave (SPLW) velocity behind whose front secondary plastic deformation of the material occurs. 
The equations of the dynamics of an ideal elastic-plastic medium for antipfane deformation are 
presented in/3/,from which, by taking into account that the SPLW is a wave of weak disconti- 

nuity, we obtain 

(3.5) 

Here A is an undetermined positive multiplier in the associated flow law. 
Using the geometric and kinematic compatibility conditions (3.5) can be written in the 

form 

[$$+ [-$jv*+P2c1[~] ==o, %[%I = 
pLz 2fh]z,- “* $- i [ I) (i = 1,2) 

(3.6) 

Here Vi are projections of the vector normal to the SPLW on the coordinate axes, and c1 is 
the SPLW velocity. 

Eliminating the quantities [&/anj, [&,lanl, in system (3.6) we obtain 

I I g (&Cl2 - pp) i- 2(.$ /A] (-c,v, + $V*) = 0 (3.7) 

The flow condition is satisfied beyond the SPLW front, and differentiating it we obtain 

at1 
Tldn -- ; T,-z+O (:<.8) 

Ahead of the SPLW front the material is in the elastic state; consequently 

zl~+x,~<O,, [h]=A+-A-=-A-<O, A+-0 {Cl) 

Because the stresses are continuous in the SPLW, it follows from (3.8) and (3.9) that 

Here n, is a certain non-negative quantity. 
Using the last two equations of (3.6) to eliminate the quantities [+x,/&z], [&,/dn], in the 

equation obtained, we obtain 

th1(2pL,k2 - S&c,) - pz 18tol&zl(v,z, .+ Y& = 0 (3.10) 

The system of two linear homogeneous Eqs.13.7) and (3.10) in [Al, [&uidnl has a solution 
in the case when its determinant is zero, from which it follows that 

pzcl" = uz - 2p2 (T~v~ + ,cav2)V(2plk2 - 9,) 

Since 52, ‘2 0, we have PA2 > CL2 for 2F2k2 ( L2, ( CC and 0 < P~c,~ ==z pz (c,,Y = I.% (1 - h% -t 
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qvJW for 0 < 8, < 2p, (1 - hvl + ~2v2)lk)2 (c,, is the plastic wave velocity). Therefore, 

the SPLW can propagate either more slowly than the platic waves or more rapidly than the 

elastic waves. Note that the SPLW can propagate only from the point F (Fig.1). 
If the opposite is assumed, i.e., that the SPLW propagates from an arbitrary point of the 

segment GF, for instance from the point G, then we have a Cauchy problem for the elasticity 
theory equations on the segment GF whose solution will be constant (since the stresses and 
displacement velocity on GF take a constant value), which contradicts the condition on the 
shock NE and the solution in the plastic loading domain ahead of the wave front NE /5/. 

4. We will consider an algorithm for constructing a SPLW which propagates in the case 
under consideration at a velocity that does not exceed the velocity of plastic wave propagation. 
Suppose we have a point L on the SPLW (Fig.l), i.e., we set yL. = 6. We draw the characteristics 
LPand LR of the families (1.2) and (1.3) through the point L. Then ys = yl, = 6,za = z~ -x6. 

The solution is known at an arbitrary point (x, y) ahead of the US front NE/5/ 

zr+=sinU+, 7._,+= COSe+, W+=M-‘(l+x+(P-O+), y(M-cosU+)=ssinO+ (4.1) 

Relationship (1.3) holds along the line LR and using (4.1) and (2.2) we write it in the 
form 

rrL + wL. = ~~a- + wa- = 7rR.+ + we+ = sin eR+ + sin ‘p (1 + x + 

9 - e,+) = fl co,+) 

(4.2) 

The characteristic LS of the family (1.4) that intersects the domain GNF (Fig.l), where 
the stresses and rate of displacement are constant, and determined from (2.10), passes through 
the point L. Consequently, the relationship along the characteristic LS takes the form 

erA + kfluL = I + 3~ + (2 (n - eN+ + ~0s uh+ - 9)) = Cl (4.3) 

The stresses on the SPLW are continuous; COnSeqUently we Set IY~ = sinUL, r9 = COS~L. Then 
(4.2) and (4.3) are a system of equations to determine WL and UL, which when solved yield 

eL = e*, WL = sin 'p (c, - e*:) 

Here B* is the root of the equation f&, - Msin Or. + G, - Mfl (es+) = 0. 
Relationship (1.2) holds along the characteristic LP and by using (4.1) and (2.2), we 

obtain from it an equation for determining %J+ 

cog e,+ + Cos cp (I + s + cp - e,+) = COSTS* +- COs 'P (cl - eL*) (4.4) 

Let en+ = e,,* be a root of (4.4); then the coordinates of the point P 

tp = XN (i - sin 'p sin 0,*)/n (U,,+), y,, = XN sin Cp Sin 0,*/B (e,,*) 

are determined from the condition for the 1inesNEand PO to intersect. 
The abscissa of the point L is determined from the equation of the characteristic Lp 

ZL = x (6 - Y,J + x,, 

The SPLW is constructed using the algorithm presented until the SPLW intersects the 
characteristic TG of the family (1.4). We note that because the solution is constant on 
the segment FG, the constant in the relationship along the characteristic (1.4) will be 
identical for all characteristics of this family that intersect the segment FG and, con- 
sequently, relationship (4.3) should be considered as an integral of the equations of motion 
in the domain TGF. The characteristic of the family (1.3) in the domain TGF are rectilinear, 
and the stresses and rate of displacement along them will remain constant. 

Therefore, after having constructed the solution in the domain TGF , 8 and w will be 
known on the characteristic TG. The initial conditions on the characteristic GM are given by 
(2.22). Therefore, we obtain a Goursat problem for the plasticity theory Eqs.(l.3) and (1.4) 
in the domain TGMU, which when solved will yield 0 and w on the characteristic UM. The 
boundary condition (2.1) holds on the line MI and we obtain a mixed problem for Eqs.(1.3) and 
(1.4) in the domain UMI. 

Further construction of the solution is carried out as follows. We specify the point 
J sufficiently close to the point T on the characteristic TI and draw a characteristic of the 
family (1.4) through it until it intersects the SPLW at the point Z (Fig.1). Because of the 
nearness of the points T, J, Z we consider the segment ZJ to be rectilinear. Furthermore, 
characteristics ZH and ZQ of the families (1.2) and (1.3) are drawn through the point Z. 
In the same way as above, by writing the equations of the characteristics jointly with relation- 
ships along these characteristics and equations governing the location of the point H and Q 
as points of intersection of the US NE and the appropriate characteristics of the family (1.5) 
issuing from the point 0, we obtain 

.!/HX + -z‘H = .z N? W + XQ = IN, (Yz - YJ)(M + COS eJ) + (& - sJ)SiII eJ = o (4.5) 
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w, + sin c), = sin cp (1 -j- n + cp - OQ+) _t sin UQ+ 

The nine equations in (4.5) form a closed system for determining the nine unknowns yfi, I~, 

Yz, Gt XQt E'Z> %i+, @Q+, %, and finding its solution reduces to solving three equations in 
@Q+, %- 

%!+, 

Having determined the coordinates and the solution at the point 2, further construction 
of the solution is performed in the same way, i.e., a Goursat problem is solved in the domain 
ZJIV, etc. 

We introduce the new variables 

E = (0 - Nw)/Z, q = (0 + Mw)/2 (4.6) 

Assuming the Jacobian of the transformation i& to be non-zero, the solution of system 
(1.3) and (1.4) can be sought in implicit form 2 = r&q), y -= Y&T)), Then we have from 
relations (4.6), (1.3) and (1.4) 

-$- (M - cos (5 i- q)) = sin (5 + q) + , +- (N 4 cos (5 + q)) = 

ax 
-sin (E -I- n) ag 

(4.7) 

System (4.7) is linear, and boundary-value problems in the phase plane (E, rl) are 
formulated on segments of the lines E = con&, q = const. This explains the great attraction 
of system (4.7) for numerical integration as compared with system (1.3) and (1.4). 

We will examine the condition for the energy dissipation to be positive in the phaseplane 

where 5 = s(E, q), Y = Y (5,n). Differentiating these expressions with respect to x and y, we 
obtain a system of four equations which yields 

8% 1 aY 0% 1 ax 
yg=-Zi;atl, ay== aq 1 ai4 --- aq i as 

A1 al' al=-;i;-Iq-’ ay=bT (4.8) 

when solved with respect to agfa.~, aiyay, aq!d~, aqiay. 
It follows from (4.81, (4.7) and (2.20) that the condition for the energy dissipation to 

be positive in the phase plane (f,q) takes the form 

(4.9) 

The initial point of the unloading wave is determined by the violation of condition (4.9) 
on the interfacial boundary. Applying the algorithm elucidated in /3/ to determine the initial 
unloading wave velocity cc, we obtain that the quantity c,, is a root of the equation 

Here axla%, adaq are approximated by finite differences, while the derivatives ayiaE and 

ayiaq are determined from (4.7). It is convenient to use the method of characteristics /7/ 
for a further construction of the unloading wave in the case under consideration. 

5. The case when a slip zone is formed ahead of the US front iVE should be examined 
separately, i.e., the characterstic OF becomes parallel to the x axis /5/. We introduce the 
system of polar coordinates 

s-5~+rcos*,y;1-rsing (5.1) 

The system of equations describing the motion of the medium in the plastic domain takes 
the following form in the system of polar coordinates (5.1) 

cos 0R (0) - sin OR, (0) + M2R (w) = 0, cos OR (w) - sin OR, (w) C (5.2) 
R (e) = 0 
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B(f)=rcos$$--sin$s, af R,(f)=rsin$$-+~os$~ 

We will seek the solution of system (5.2) in the form of power series 

e = kjo ek ($) rk7 w = k$o wk ($1 rk (5.3) 

Substituting the expansion (5.3) into (5.2) and equating terms in r’ to zero, we obtain 
a system of two ordinary differential equations to determine the appropriate coefficients ok 

and wk. For k = 0 we obtain 

Firstly, the trivial solution 

e. = A, = con&, W, = A, = const (5.5) 

satisfies system (5.4). 
Secondly, when the determinant of system (5.4) equals zero, we have 

8, = arcsin (fMsin$) - $, w,, = T (0, --4,)/M, A, = const 

For k = 1 we obtain 

cos(e, + q)e,(i-3) + w( w,sin$-sin*%)-sin@ + e,)$ =O 

we, + *P,( wl-el~) + 6,cos*--sin@+ e,) +$--sin*% =O 

(5.6) 

(5.7) 

to determine the coefficients %, W1. 
In the case when El,, = const, w0 = const, the general solution of system (5.7) has the form 

w1 zz A,f+ f AJ-, O1 = M [A,f+ - A&f+], A, = const (5.8) 

A6 = con&, f* = M sin 11, & sin (* + 0,) 

When relationships (5.6)are satisfied, the integrals of system (5.7) are 

Mw, T 36, = 0, 6, f Mw, = Ai f/sin 11 exp (+F ($)/I@), A i = const 

(i = 5, 6) 

(5.9) 

We will confine ourselves to two terms of the series in the expansions (5.3). 
The motion of the medium in the elastic domain and in the unloading zone is described by 

a system of equations /3/, that takes the following form in the system of polar coordinates: 

R (G) + R, (w) = 0, R, (z,) + xR (w) = 0 (5.10) 

We will seek the solution of system (5.10) in the form of power series 

T, = g T:~) (I#) rk, 
k=O 

w = k$O w(k) ($) rk (ELiI) 

Substituting the expansions (5.11) into (5.10) and equating coefficients of rk to zero, 
we obtain a system of ordinary differential equations to determine the coefficients T;~"', W(k) 
and we will write its general solution as follows: 

Wck) = %-I [Tkfk- + &fk+l, Tik) = Tkfk- - &fk+ 

f& = (cm 9 + x sin v)', Tk = const, Bk = COnSt 

(5.12) 

Using expansion (5.11) we have from relationship (1.j) 
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m 

‘1 = kzo ” CL, (9) - w(k) (9)) (.X13) 

Fig.2 

6. The constants in relationships (5.5), (5.6), (5.9), (5.12) and (5.13) are determined 
from the conditions connecting the integrals obtained in the neighbourhood of the point N 
(Fig.2). Expanding the solution ahead of the US front and the jump in the velocity w in a 
power series in r in the neighbourhood of the point N (taking two terms in the expansions 
into account here), we will have 

0+ = 00+ + B,+r = n - rb,, TV+ = sin B,,' + cos O,+O,+r = rA, 

w+ = M-'(1 + n + cp + et) = (1 + cp)lM + rA,lM, [WI = E, + E,r 

TZ + = cos e,+ - sin 6,+8,+r = -1, A3 = (1 + sin CP)/X~ 

(li.1) 

We have $=n--cp on the line ND. Connecting the elastic solution (5.11)-(5.13) on 
the line ND in the neighbourhood of the point N (taking two terms in the expansion into 
account) and the solution in the plastic domain ahead of the US front (6.1) taking relationships 
on the line of strong discontinuity (2.2) into account, we obtain 

L, + L, sin$r - n-l (To + B,) + 2xe1 cos cpT,r = E, + E,r + 4.,r 

~'(2'~ + B,) + ~‘2 cos cpT,r f (1 + cp)/M + A&M = E, + E,r 

T, - B, - 2 cos ‘pT,r = x (E, + E,r) - 1 

(6.2) 

For r = 0 the flow condition (2.3) should be satisfied at the point N. Taking this into 
account and equating the coefficients of identical powers of F to zero in relatinships (6.2), 
we obtain a system of linear equations to determine L,,, L,, T,, T,, B,, E,, E,, from which 

Lo = (1 f cp)lM, L, = (1 + sin rp)A,isin (p, T, = ((1 t- 'p)xM-' - I)/2 (6.3) 

B. = -2xzlMz + II? +x (1 _t cp)/(BM), E, -1 2xlM2, E, = sin (~A,12, 

T, = -A& 

A fan of curvilinear characteristics (1.4) whose inclination to the x axis should be 
negative is developed in the neighbourhood of the point N. We obtain from relatinships (1.4), 
(6.3) and (5.6) (with the upper sign) 

tg$* = sin B0 (M - cos 6,) = 2x (M3 - M2 + 2)> 0 

Therefore, the integral (5.6) with the lower sign holds in the case under consideration: 
using the latter and relationships (1.4) and (6.3) we obtain 

tg $* = -sin B,,/(M + cos 0,) = -2x (M3 + M2 - 2) < 0 (6.4) 

The quantity I@* given by (6.4) governs the position of the first characteristic of the 
fan NM (Fig.2). The constant in the second relationship in (5.6) (with the lower sign) is 
determined from the relationships (6.2), (2.4) and (2.7) 

~t0, - eO = I + ‘p - 2 ~03 ‘p (6.5) 

Using (6.5), the boundary condition on the interfacial boundary (2.1) can be represented 
in the form 

1 - 'p - 2 ~0~ ‘p + 8, = M p tg ‘pl cos eO W3) 
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The root B0 = eo* of (6.6) determines the inclination to the x axis for the last 

characteristic of the fan NG (Fig.2) 

tgq,* = -sin B,*/(M - cos e,*) 6.7) 

The fan of curvilinear characteristics issuing from the point N will be cut off by the 
SPLW NK (Fig.2). Let the equation of the SPLW have the form 9 =9(r). Expanding the func- 

tion 9 (F) in a power series in r and confining ourselves to two terms of the series, we have 

9 = *i?o + *1r (6.8) 

Connecting the elastic solution (5.11)-(5.13) on the SPLW front (6.8) in the neighbourhood 
of the point N (we limit ourselves to two terms in the expansions) and the plastic solution 
(5.6) and (5.9) (with lower signs), and taking into account here that the stresses and rate of 
displacement are continuous on the SPLW front, we obtain a system of three equations. Hence, 
equating coefficients of identical powers of r to zero, we obtain a system of linear equations 
to determine B,, A,, A,, qo, &, which we solve to find 

(6.9) 

A,= 4_ 
AeI/sin $0 

[ZF,(1~cosZrp)+F,(2sinq,-l)], F,=L,sin+" 

% = F?J(%) [ 
Fp(3+2sin~)$2(cos2~-3)Ft 

& 19 
ilI cos* b-2 

r;,(')=(i+ <l...._jw"sin*j 

$zpc = arctg(-sin 2rp/(M + cos 29)), A, = cp - 2 + 2 eos cp -& 

AZ = -4(2 sin cp _t cos 29) 

Connecting the solution (5.51, (5.8) to the solution [5.6), f5.9) in a similar way in 
the neighbourhood of the last characteristic of the fan NC (Fig.2), for which the expansion 
holds (where the quantity qO* is determined from the relationship (6.7)) $* = $,* +&r, we 
find the remaining constants 

A, = arcsin(---M sin*,*) -***, &* = 

-A, vsinqO* exp (--F (+,,*)IM)F3 ($0*)/4 

Ad=_ A6e=P(-~(~*)~~) - ,A,= 
.%jf ~-~tg~~~in~~) 

(uwt* risin%* l-~tgrpplsin& ’ 

A = (A, - A&M 

Therefore, the solution is completely defined in the neighbourhood of the point N. Later, 
by specifying a point & lying sufficiently close to the point @ fFig.2) OR the SPLW and 
drawing a characteristic LP of the family (2.8) through it, we can construct the solution 
according to the algorithm elucidated earlier for the case when there is no slip zone ahead of 
the US front. 

The process of plastic deformation behind a reflected US front was investigated in /8-l@/. 
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ASYHPTOT~~ TO INVARIANT TORI IN THE THEORY OF 
PERTURBED HAMILTONIAN SYSTEMS* 

S.V. BOLOTIN 

Poincare's theory /I/ of the formation of isolated periodic motions during the perturbation 
of resonant invariant tori of integrable Hamiltonian systems was generalized in /2f by the 
methods of KAN-theory to the case of conditionally-periodic motions. In this paper variational 
methods are used to prove the existence of motions doubly-asymptotic to the nascent invariant 
tori. The existence of such trajectories is important in the qualitative investigation of a 
perturbed system. For example, if the doubly-asymptotic trajectory is isolated, then the 
perturbed system is non-integrable /3/ and possesses stochastic behaviour. Arnol'd's /4/ dif- 
fusion for Hamiltonian systems with many degrees of freedom is based on the existence of 
motions doubly-asymptotic to invariant tori. 

Let the Hamiltonian function fi= H,+ eH,+O(Ea) of an autonomous Hamiltonian system with 
m degrees of freedom depends smoothly on the parameter e. We assume that the unperturbed 
system with Hamilton function H, has a smooth compact invariant m-dimensional Lagrangian 
manifold M (a manifold M is Lagrangian if the restriction to N of the phase space's canonical 
a-form is zero), entirely filled with n-dimensional invariant tori carrying conditionally- 
periodic motions with identical vector frequencies e=Rn. This means that a free action of 
the n-dimensional torus Tn= Rn/2nZn is specified on M: rp=Tn, zeM-f(q,x) EM, and for any 
z E M the curve t-f(ot,x) is a trajectory of the unperturbed Hamiltonian system. A principal 
example is the case /2/ when the unperturbed system is fully integrable, and M is its m-dimen- 
sional resonant torus, such that the corresponding frequency vector 12=Rm satisfies m--n 
resonance relations of the form <k, B) = 0, k E 7P. 

A neighbourhood of the Lagrangian manifold H in the phase space can be identified with 
a neighbourhood of the set (y= 0) in the cotangent bundle T*M= {(x,y):s~M,y E T,*M} with 
canonical I-form dsAdy. We extend the action of the torus T” on M to the Hamiltonian action 
of TR on T’M: 

‘P c Tn, (z, Y) E T*M - (f (9, 4, fr*-*!A (1) 

Let a, and 17, be the results of averaging the functions Ha and H1 with respect to the 
action (l), for example 

- 
Ho@, Yf =- &- s Hoff (tp, .z), I,*-%) @ (2) 

T” 

We make the following assumptions: 
11 the frequency vector o is non-resonant in the sense of KAM-theory: there exist c>o 

and N>n--i such that 

Ite,k)I>CllkIt-N (3) 

for all non-zero kezZn. 
2f the following convexity constraint is satisfied: the Hessian A f~)-~om,(f,O) is positive- 

definite for all ZEM. This condition can be weakened, for example, by changing it to the 
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